A Markov Random Field Groupwise Registration Framework for Face Recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Face Recognition Based on Markov Random Field Modeling

In this paper, a Bayesian method for face recognition is proposed based on Markov Random Fields (MRF) modeling. Constraints on image features as well as contextual relationships between them are explored and encoded into a cost function derived based on a statistical model of MRF. Gabor wavelet coefficients are used as the base features, and relationships between Gabor features at different pix...

متن کامل

Markov random field optimization for intensity-based 2D-3D registration

We propose a Markov Random Field (MRF) formulation for the intensity-based N-view 2D-3D registration problem. The transformation aligning the 3D volume to the 2D views is estimated by iterative updates obtained by discrete optimization of the proposed MRF model. We employ a pairwise MRF model with a fully connected graph in which the nodes represent the parameter updates and the edges encode th...

متن کامل

A Markov Random Field Model for Automatic Speech Recognition

Speech can be represented as a time/frequency distribution of energy using a multi-band filter bank. A Markov random field model, which takes into account the possible time asynchrony across the bands, is estimated for each segmental units to be recognized. The law of the speech process is given by a parametric Gibbs distribution and a maximum likelihood parameter estimation algorithm is develo...

متن کامل

Markov Random Field Models for Pose Estimation in Object Recognition

In this paper, we explore theoretical models for pose estimation and object matching based on Markov random elds (MRFs) and the maximum a posteriori (MAP) probability principle. The set of pose estimates as well as matching estimates are considered to be MRFs whose prior distributions are used as the prior constraints. The MAP solution is found from these distributions and an assumed observatio...

متن کامل

Face Recognition With Contiguous Occlusion Using Markov Random Fields

Partially occluded faces are common in many applications of face recognition. While algorithms based on sparse representation have demonstrated promising results, they achieve their best performance on occlusions that are not spatially correlated (i.e. random pixel corruption). We show that such sparsity-based algorithms can be significantly improved by harnessing prior knowledge about the pixe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2014

ISSN: 0162-8828,2160-9292

DOI: 10.1109/tpami.2013.141